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Abstract—Traffic analysis attacks, including website finger-
printing and protocol fingerprinting, are widely adopted by Inter-
net censorship to block a specific type of traffic. To mitigate these
attacks, some advanced approaches such as traffic morphing
and protocol tunneling techniques have been proposed. However,
the existing traffic morphing/protocol tunneling techniques suffer
from showing a strong traffic pattern or can be uncovered with
a low false positive. Further, they mainly rely on learning the
pattern for specific traffic, which makes it highly possible to be
identified due to a lack of dynamics. In this paper, we propose
a dynamic traffic camouflaging technique, coined FlowGAN, to
dynamically morph traffic feature as another “normal” network
flow to bypass Internet censorship. The core idea of FlowGAN
is to automatically learn the features of the “normal” network
flow, and dynamically morph the on-going traffic flows based on
the learned features by the adoption of the recently proposed
Generative Adversarial Networks (GAN) model. To measure
the indistinguishability of the target traffic and the morphed
traffic, we introduce a novel concept of ε-indistinguishability. We
evaluate the proposed method on a dataset involving 10,000 real-
world flows, and experimental results show that the effectiveness
and the efficiency of FlowGAN regarding ε-indistinguishability,
AUC, and latency. To the best of our knowledge, our work is
the first one to adopt GAN for automatic traffic generation and
censor circumvention.

I. INTRODUCTION

Internet censorship circumvention is regarded as one of the
key applications of anonymous communication techniques [1].
Since the network protocols and connection endpoints adopted
by circumvention systems are quite different from those of
other Internet services, it is easy for ISP-level censorship to
perform the traffic analysis attacks and block them at a low
cost without compromising any other network services. The
typical traffic analysis attacks include website fingerprinting
(WF) attacks [2], [3], [4], [5], which aim to infer the web
activity of a client (e.g., which web page is visited) even when
the client is using the anonymous tool, and protocol finger-
printing (PF) attacks [6], which analyze the traffic pattern to
measure the similarity between an unknown flow and a specific
protocol. In general, traffic analysis attacks are modeled as
the classification problem, where the attackers extract features
from traffic flows they captured and employ classifiers such as
k-Nearest Neighbors (kNN) or deep neural networks (DNN)
to fingerprint these flows.

To mitigate traffic analysis attacks, different kinds of de-
fense techniques have been proposed in recent years. A com-
mon approach of preventing leaks is to obfuscate the encrypted
traffic by changing the statistical features of the traffic, such

as the packet size and packet timing information [3], [7],
[8]. More advanced approaches include Traffic Morphing,
which can optimally morph one class of traffic to look like
another class [9], and the protocol tunneling technique, which
leverages the popular encrypted online services (e.g., living
streaming) to transmit censored content [10]. However, the
existing traffic morphing/protocol tunneling techniques suffer
from showing a strong traffic pattern or can be uncovered
with a low false positive rate [2], [5]. Further, the existing
solutions heavily rely on the learning of the traffic pattern
of a specific kind of flow, which makes it highly possible to
be recognized and blocked by the censors. A good example is
CovertCast, which uses Youtube live streaming to transmit the
covert channel. However, Youtube has been blocked by more
than 10 countries/areas according to [11], which makes the
covert channel fail to work either. Therefore, a more dynamic
traffic camouflaging technique is highly expected.

In this study, we propose a novel traffic camouflaging tech-
nique, coined FlowGAN, which allows a proxy to dynamically
morph on-going traffic flows as some other flows. As shown in
Fig. 1, by giving a source (or censored) flow and a target (or
permitted) flow, the core idea of FlowGAN is to automatically
extract the traffic features of the target flow, and morph the
source flow to the target flow based on the extracted traffic
features. The generated flow should be indistinguishable from
the target flow, which can provide the privacy guarantee and
censorship circumvention. All of these can be achieved by
the adoption of the recently proposed Generative Adversarial
Nets (GAN) model. GAN’s discriminator tries to classify if the
output flow is censored or the permitted, while simultaneously
training a generative model to bypass the discriminator’s
detection. Since GANs learn the pattern that adapts to the
data, they can be applied to a multitude of tasks (or multiple
target permitted flows) that traditionally would require very
different kinds of loss functions. Compared with any previous
works, the proposed approach shows its superiority in terms
of dynamical traffic camouflaging, which is expected to morph
a censored flow to multiple target flows. This is expected to
prevent the censors from recognizing and blocking any specific
type of traffic. To validate the effectiveness of FlowGan, we
have designed a prototype. The evaluation is performed on a
dataset involving 10,000 traffic flows to baidu.com. We give
a formal definition on indistinguishability of two traffic flows
and evaluate the effectiveness and efficiency of FlowGan, in
terms of a series of metrics including Indistinguishability,
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Fig. 1. Overview of FlowGAN

AUC, Latency. The evaluation results well demonstrate that
FlowGan outperforms the counterparts and is expected to
significantly mitigate existing traffic analysis attacks.

The main contributions of our paper are as follows:
• We proposed a new traffic camouflaging mechanism,

FlowGan, to secure anonymous network communications
against both website fingerprinting attacks and protocol
fingerprinting attacks. FlowGan employs GAN models to
generate network flows that are indistinguishable from
given traffic flows so that the censor cannot block them.

• We proposed a novel privacy model to evaluate the
effectiveness of the proposed work. This new private
model measures the indistinguishability between the
GAN-generated network flows and the targeted network
flows.

• We performed a series of state-of-the-art traffic analysis
attacks towards FlowGan based on a real-world dataset.
The evaluation results well demonstrated the effectiveness
and the efficiency of FlowGAN under a series of state-
of-the-art traffic analysis attacks.

To the best of our knowledge, this is the first work
which leverages GAN for traffic camouflaging and anonymous
communications. The remainder of the paper is structured
as follows. Section II surveys the representative and latest
related works of traffic analysis attacks and defenses. Sec-
tion III presents the threat model in our paper. Section IV
describes our private model and the evaluation metric. Section
V introduces the methodology and implementation of our
system. Section VI elaborates experiments and evaluation
results. Section VII concludes this paper.

II. RELATED WORKS

Traffic analysis can be used to conduct side-channel attack
in many scenarios [12], [13], [14], [15]. One of the most
common cases is the fingerprinting attack through network
traffic analysis, including website fingerprinting and protocol
fingerprinting. Recent research works have shown that state-
of-art anonymous mechanisms are still vulnerable under these
attacks and thus new defense mechanisms are proposed.

A. Traffic Fingerprinting Attacks

Fingerprinting attacks are usually modeled as a classifica-
tion problem in which attackers extract features from side
channel and classify a set of websites/apps [4], [16]. Traffic
fingerprinting attacks have been being extensively studied over
the past ten years [17]. Dyer et al. [3] provided a first compre-
hensive study on traffic analysis attacks and defenses in 2012,
and their results showed that many of the countermeasures by
that time could not resist even simple attacks that leverage
general traffic features such as bandwidth and total time.

Cai et al. [18] proposed to compare the similarity of packet
traces (e.g., packet orderings) for identifying web pages,
and then used Hidden Markov Model (HMM) to fingerprint
websites based on the sequence of visited web page under
a simulated Tor environment. Wang et al. [5] built a k-
Nearest-Neighbor (kNN) classifier using a large set of features.
Their classifier has been tested on a large open-world setting
and outperformed some previous works. In [19], [20], the
authors proposed that side channel data is efficient to uncover
enough information. Hayes et al. [21] proposed an attack that
employed Random Forest model to produce fingerprints of
websites, and launched website fingerprinting attack with a
large amount of noisy data as well as Tor environment. In
2016, Panchenko et al. [4] used a SVM classifier to classify the
cumulative features (CUMUL) of different flows. Meanwhile,
they evaluated fingerprinting at the Internet scale with repre-
sentative data. However, their experiments showed no existing
method can scale for any web page in their datasets.

In the recent two years, approaches that exploited more
advanced models, such as deep learning model (supervised
model [22], unsupervised model [23]), were studied. More-
over, the fingerprintability [24] was measured and analyzed.
Though secure channels and encryption have been widely
deployed in network communication, traffic features in side-
channel and usage patterns inevitably provide evidence to
attackers. Along with larger datasets being evaluated and
more powerful attacks being proposed, the implications of
traffic fingerprinting attacks are alarming and attract research
interests increasingly.



B. Defenses for Fingerprinting Attacks

Various defenses were proposed to counter fingerprinting
attacks. Since many of the attacks extracted traffic features to
discriminate different websites, a typical category of coun-
termeasures is to conceal the traffic features. Padding and
creating dummy traffic are common ways to modify traffic
features such as packet size and time interval. For instances,
HTTPOS [7] can hide packet length by strategically sending
HTTP request, while TrafficMorphing [9], WTF-PAD [25],
BuFLO [3], CS-BuFLO [26], and Tamaraw [8] padding traffic
packets in different strategies to hide the actual time interval
and length. However, many of them have been proved to
be ineffective under newly proposed attacks or cause a large
overhead [2], [5].

With the urgent requirements for defending fingerprinting
attacks, more effective and efficient countermeasures that con-
sider the open-world scenario and overhead were proposed in
recent years. To consider the practical environment, Cherubin
et al. [27] proposed a server-side defense a lightweight client-
side defense implemented as a browser add-on to defend WF
attacks at the application level. Walkie-Talkie [2] modified
the browser communication from usual full-duplex mode to
in half-duplex mode so that the traffic is sent in moldable
interleaving bursts and the molding is computationally cheap.
Cui et al. [28] used variable realistic network traffic as noise
based on the motivation that visiting two websites at once
mitigates website fingerprinting attacks. Our solution consid-
ers a practical scenario that censors that identify suspicious
traffic patterns [29] may block the morphed traffic causing
the countermeasure failed. So our goal is to generate traffic
that is hard to be fingerprinted and can circumvent Internet
censorship.

III. THREAT MODEL

By following the similar threat model as shown in [30],
in this study, we consider the attacker model as a state-level
adversary, which attempts to classify the censored traffic from
normal traffic by leveraging a series of website fingerprint
techniques. The censored traffic is expected to take advantage
of protocol tunneling techniques to evade the detection of
the adversary by using the encrypted applications as the
carriers for covert channels. The adversary is not assumed
to demand the application providers to decipher and disclose
the original content, which enables the easy identification and
filtering of the covert data. However, the censorship system
can be deployed by domestic ISPs with cooperation with the
adversary, which allows it to monitor, store and inspect all
traffic flows crossing its borders [30].

The adversary is assumed to perform the various traffic
analysis towards some suspicious flow and block the traffic
containing the covert channels. In practice, morphing the
censored traffic to a specific kind of popular traffic (e.g.,
livestreaming services such as youtube) is quite risky since
this popular traffic may be unavailable in some regions. For
example, youtube has been blocked by more than 10 coun-
tries including Iran, Afghanistan, Armenia, Brazil, Finland,

TABLE I
NOTATION

Symbol Description
Adv Adversary
Chl Challenger
Tar Traffic from morphing target
Gen Generated traffic
P Adversary’s prior knowledge
HP Adv’s classifier trained with P .

PT = P ∩ Tar Adv’s prior knowledge about T
PG = P ∩Gen Adv’s prior knowledge about G

C1 ⊂R T C1 is a random subset of Tar
C0 ⊂R G C0 is a random subset of Gen

Challenger C Adversary A
Tar initialization

Gen←− GAN(Tar) Hp←− P
S0 ←− Tar, S1 ←− Gen
b←$ {0, 1}

c←− Sb
c b̂←− A(c)

PrivK = 1 ⇐⇒ b̂ = b

Fig. 2. Traffic Indistinguishability Game

Germany [11]. Therefore, a more dynamic traffic obfuscation
solution which can dynamically transform the censored traffic
to other popular applications is highly desirable.

IV. TRAFFIC INDISTINGUISHABILITY DEFINITION

In this section, we formalize traffic indistinguishability
under the traffic analysis attack in our problem. We consider
the scenario that an attacker attempts to infer if an encrypted
traffic flow contains the covert channel via performing the
traffic analysis and block a specific traffic flow based on the
inference results. Our goal is to generate a traffic flow which
is indistinguishable from another “normal” network flow.

A. Notation

The notations in this paper are summarized in Table I. We
denote the set of target traffic flows as Tar = {T1, T2, ..., Tn}
and the set of generated traffic flows which are generated based
on the target traffic as Gen = {G1, G2, ..., Gn}, where Ti
and Gj represent a traffic flow of Tar and Gen, respectively.
For an adversary (Adv), we denote his/her prior knowledge
as P = PT ∪ PG where PT and PG are prior knowledge
about Tar and Gen, respectively. PT and PG are supposed to
be known by the adversary and used to train the classifier to
classify Tar and Gen.

B. Traffic Indistinguishability Game

We model our problem by a traffic indistinguishability game
involving an adversary Adv and a challenger Chl. Traffic
indistinguishability game can be described as follows (Fig.
2):
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(c) Generated Traffic

Fig. 3. Flow Visualization

Setup: The challenger Chl initializes the target traffic
flows Tar and generates the morphing traffic flows Gen.
At the same time, Adv utilizes P to train a classifier HP
for classifying traffic flows from Tar and Gen.
Challenge: Chl randomly flips a coin b. The challenger
sends S0 if b = 0 to the adversary. Otherwise, he will
send S1. Where S0 and S1 are the randomly selected
traffic flows from Tar and Gen, respectively.
Classification: Adv uses the classifier HP to judge the
traffic flow from Tar or Gen, and output the predicted
b̂.

The adversary wins the game if and only if b̂ = b, which
means Adv can distinguish traffic flows from Tar and Gen,
and we denote it as PrivK = 1. Based on the above
description, we define ε-indistinguishability to represent the
indistinguishability of the target traffic Tar and the morphing
traffic Gen.

Definition 1. (ε-indistinguishability) Let PrivK = 1 iff b̂ = b.
We say the generated traffics is ε-indistinguishability if for
every adversary A it hold that:

1

2
− ε

2
≤ Pr[PrivK = 1] ≤ 1

2
+
ε

2
(1)

According to the Definition 1, the smaller the ε is, the
lower the possibility of a successful classification attack is.
When the ε equals to a very small value, the classification
attack tends to be a random guess, and the traffic can be
indistinguishable. Based on these concepts, we further define
the indistinguishability under Classification Attack (IND-CA)
as Equ. 2 to quantify the traffic indistinguishability.

IND − CA =
|Pr[PrivK = 1]− 0.5|

0.5
(2)

IND-CA has the same form as ε-indistinguishability, and it
is a numerical value which is linear to the indistinguishability
within [0, 1]. When it is closer to 0, the attack is less effective,
and the traffic is more indistinguishable.

V. SYSTEM DESIGN

A. Motivation

As discussed above, a dynamic traffic feature camouflaging
scheme is highly desirable to evade the detection of ISP
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Fig. 4. System Architecture

censors. Different from previous works that mimic the traffic
features of a specific popular traffic flow, the proposed system
can automatically generate the camouflaged flows, which is
indistinguishable from any target flow. To achieve this, we
design a novel automatic traffic camouflaging system based on
the generative adversarial network (GAN). GAN is originally
proposed by [31] and has achieved unparalleled results in
scenarios such as image and 3D objects generation. However,
less attention has been paid to applying GAN to the area of
anonymous communications. To the best of our knowledge,
our work is the first one to adopt GAN for automatic traffic
generation and censor circumvention.

As shown in Fig. 3(a), we have a censored flow which
shows a distinct traffic pattern compared with the permitted
flow in Fig. 3(b). Therefore, the adversary can easily classify
the censored flow from the permitted ones via traffic analysis
techniques. Our goal is to camouflage the censored traffic
in Fig. 3(a) to a target flow (e.g., Baidu traffic flow) which
is shown in Fig. 3(b). Therefore, we take flows in Fig.
3(b) as training set and generate flows in Fig. 3(c) as the
morphed traffic. As shown in Fig. 3(c), the generated flow
possesses similar features as the target flows shown in Fig.
3(b). However, they are not simply replicas. In fact, most of the
generated flows do not appear in the target flows. This provides
randomness to defend the censorship. In order to improve the
generation efficiency and technical feasibility, we adopt GAN
model to produce important features for a network flow rather



than using the entire packet sequence.
The system architecture is shown in Fig. 4. It includes

a GAN generator, a network flow generator, a local proxy
server, and a remote proxy server. GAN generator is trained to
generate important traffic pattern features and forwards them
to the flow generator. The flow generator receives these traffic
pattern features to generate packet sequence of a network
flow. Local and remote proxy servers send packets as the flow
generated. In the below, we will present each module of the
system as follows.

B. GAN Generator

1) GAN model: GAN is a framework for improving gener-
ative models via an adversarial process [31]. GAN simultane-
ously trains two models, a generative model G to learn the data
distribution from training data, and a discriminative model D
to distinguish data generated by G from the training data. G
and D plays an adversarial game: G generates samples from
random noise pz and aims to fool D that this sample is from
training data; D tries to distinguish these samples with a high
successful rate. At the end of this game, only one optimal
solution exists: the generator G learned the distribution of
training data and generate sample indistinguishable from these
training data so that discriminator cannot classify generated
samples [31].

Formally, the GAN plays a min-max game with loss func-
tion J(G,D):

min
G

max
D

J(G,D) = Ex∼pdata[log D(x)]

+ Ez∼pz[1− log D(G(z))]
(3)

The discriminator loss J is computed by cross entropy for
binary classifiers:

JD = −Ex∼pdata[log D(x)]−Ez∼pz[1− log D(G(z))] (4)

The generative loss JG is theoretically negative of JD. In order
to speed up training, JG is computed as following:

JG = −Ez∼pzlog(D(G(z))) (5)

The discriminator and generator are updated by these two
loss function respectively through stochastic gradient, until
the generator can produce realistic samples that fool the
discriminator.

2) Design: In our system, the GAN generator employs
a well-tailored GAN model for generating indistinguishable
traffic features, as presented in Algorithm 1. Given typical
features Pr (e.g., the number of packets, packet length, arrival
time interval) extracted from some targeted traffic flows as
the training set, the GAN model aims to train a generator that
can produce traffic features that are indistinguishable from the
targeted traffic.

In this algorithm, both generator Gθ and discriminator Dω

are a dense neural network with random parameters initially.
During iterations, the generator is learning to produce more
and more realistic traffic feature samples (line 13-15), and
the discriminator uses both samples from the training set

Algorithm 1 Traffic Pattern Generation through GANs
Input: Traffic features Pr from the training set, hyper pa-

rameters including discriminator iteration factor k, batch
size m, regulation parameter λ

Output: A trained traffic feature generator Gθ
1: Initialize a generator Gθ with parameters θ and a discrim-

inator D with parameters ω
2: while Gθ has not coverage do
3: // Training the discriminator
4: for k steps do
5: x = a batch of m training samples from Pr
6: z = a batch of m generated samples from random

noise
7: ε = a batch of m uniform random numbers in [0,1]
8: x̂ = ε× x+ (1− ε)×Gθ(z)
9: Update the discriminator with RMSProp algorithm

by descending the discriminator’s loss:
JD = Em[Dω(Gθ(z))−Dω(x)

+ λ× (‖∇x̂Dω(x̂)‖ − 1)2]
10: end for
11:
12: // Training the generator
13: z = a batch of m generated samples from random noise
14: Update the generator with Adam algorithm by descend-

ing the generator’s loss:

JG = −Em[Dω(Gθ(z))]

15: end while

(i.e., x) and samples from the generator (i.e., Gθ(z)) to
get better at distinguishing generated traffic from real traffic
(line 3-10). Both generator and discriminator are improved
through back propagation, and the gradient information from
the discriminator is back propagated to the generator so that
the generator knows how to adapt its parameters to produce
output data that can fool the discriminator and other traffic
analysis attacks. In each iteration, the discriminator is trained
by k steps and the generator is trained by one step to avoid
overfitting on finite dataset [31].

In order to overcome the challenge that traditional GAN
is difficult to train (for example, difficult to achieve Nash
equilibrium and difficult to converge during training), we adopt
Wasserstein GAN [32] for our GAN generator. To implement
the generator and discriminator in the Wasserstein GAN,
WGAN [32] is employed as the generator’s loss function and
WGAN-GP[33] is selected as the discriminator’s loss function.
As suggested by Arjovsky[33], it is more robust to train the
GAN if we remove the sigmoid function from the last layer.

3) Feature Selection: We select six typical traffic data as
features to train our GAN model: the total number of outgoing
packets Nout, the total number of incoming packets Nin, the
summation of bytes for outgoing packet Sout, the summation
of bytes for incoming packet Sin, the cumulative bytes Cum,
and the average interval between packets AvgInter. They are
useful features for fingerprinting network traffic as discussed



in previous works [4], [5]. We use them for training a
strong discriminator that can classify traffic from different
sources accurately so that the discriminator can help improve
the generator model for producing high-quality camouflaged
traffic patterns. However, the total cumulative bytes can be
calculated by bytes of outgoing packets and bytes of incoming
packets. So in our training process, we only select the former
five features.

C. Flow Generator

Flow generator produces packet sequences from traffic
pattern features provided by GAN generator. In our flow
generation algorithm, we use the CUMUL representation [4]
of source flows to guide the traffic generation process. For
the ease of presentation, we use packet length (byte) as an
example. Given a network flow containing packet sequence
P = [p1, p2, ..., pN ], where pi’s absolute value represent the
packet length of i-th packet and pi > 0 indicates an outgoing
packet and pi < 0 indicates an incoming packet, the CUMUL
representation for this flow is calculated to form a sequence
C = [c0, c1, ..., cN ], where c0 = 0 and ci = ci−1 + pi for
i ∈ {1, 2, ..., N}. Fig. 3 shows an example of the CUMUL
representation of three different flows: the censored ones, the
uncensored ones and the generated ones. It can be observed
that the CUMUL values between censored traffic and uncen-
sored traffic are distinguishable after accumulating their packet
length.

In order to produce indistinguishable network flows from
a training network traffic set, we derive network flows from
the CUMUL that fits the traffic pattern generated by GAN
generator. The algorithm is shown in Algorithm 2, where real
network flows are selected from target flows to direct the flow
generation. In every step, we randomly choose a set of packets
that ever existed in the real flow to avoid the unique packet
length attack [5], and select the ones whose CUMUL similarity
is higher than the threshold to ensure the indistinguishability.
We make sure each generated flow has the exact incoming
packet count, outgoing packet count, average interval time as
the generated features. And at the end, we select the one that
has the best similarity with other traffic pattern features from
the generated flows as the output. In this way, we produce
traffic flows that have similar CUMUL, and are expected to
be indistinguishable by traffic analysis attacks.

D. Proxy Servers Design

The proxy servers include a local proxy and a remote
proxy, which communicate with each other according to the
network flow patterns received from the flow generator. The
architecture of proxy servers is shown in Fig. 5.

The local proxy and the remote proxy share the same
flow generator with the same random seed. Clients connect
to a local proxy and send payloads to it. Then the local
server morphs the traffic as the pattern generated by the flow
generator. Generated traffic is sent over the censorship to the
remote proxy server. The remote proxy is able to restore traffic
payloads and send them to the targeted remote servers.

Algorithm 2 Flow Generation Algorithm
Input: traffic pattern features F generated by GAN generator
Output: a flow = [p1, p2, ..., pN ]
1: S = first 100 network flows similar to feature F
2: CUM S = []
3: for s in S do
4: CUM S.append(cumulative representation of s)
5: end for
6: flows = []
7: for sample = 1toMAX SAMPLE do
8: packet count = Nin +Nout
9: flow = []

10: for packet no = 1 to packet count do
11: loop
12: packet = randomly select a packet in S
13: flow.append(packet)
14: CUM F= cumulative representation of flow
15: max sim =

max (similarity(CUM F, cum ∈ CUM S))
16: if max sim > THRESHOLD then
17: break
18: else
19: flow.remove(packet)
20: continue
21: end if
22: end loop
23: end for
24: flows.append(flow)
25: end for
26: return flow ∈ flows with best similarity with F

Flow Generator

Client1

Client2

Client n

Local Proxy Remote ProxyCensor
Server

...

Fig. 5. Proxy Server Architecture

VI. EXPERIMENT AND EVALUATION

A. Data Collection

The network flows used in our experiments are collected at
the gateway from a local server in the lab to baidu.com, which
is the largest Chinese search engine and should hardly be
blocked so that it can act as the normal traffic. We use pypcap
to sniff packets and use dpkt to analyze traffic. Since we focus
on manipulating network flow, TCP packets are recorded.
Each flow is identified with a 4-tuple: (source address, source



TABLE II
GAN NET STRUCTURE

Net Layer Number of
unit Activation

Generator
1 20 leaky-relu
2 10 leaky-relu
3 5 tanh

Discriminator
1 50 leaky-relu
2 30 leaky-relu
3 1 none

port, destination address, destination port), and is ensured to
be a complete TCP session, i.e., starts with TCP SYN and
ends with TCP FIN. Since only metadata are required in the
experiment, each network flow is stored with a sequence of
packets containing the packet size, packet direction, and packet
timestamp. DNS queries are pared to ensure only traffic to
*.baidu.com is collected. In total, more than 10,000 network
flows and more than 300,000 packets are collected as our
dataset.

B. Data Preprocessing

Given the collected traffic data, we process them into feature
vectors that can be the input of the discriminator model and
generator model in GANs. To do this, we process traffic
packets and calculate statistical features including the number
of outgoing packets, number of incoming packets, bytes of
outgoing packets, bytes of incoming packets, average interval
time between packets, and cumulative bytes for outgoing and
incoming packets, for each flow. As a result, each flow is
represented by its numerical feature vector, and these feature
vectors are the training set for generating dynamic traffic
patterns in the next step.

C. GANs Model Training

Data Scaling: Data normalization is a useful technique for
better training deep neural networks. In order to improve the
performance of the GANs model, we first normalize features,
i.e., scaling all the feature values into the range from -1 to
1. By analyzing the distribution of each feature’s values, we
find a few samples have quite large values while the most are
within a small range. So we use log function to scale features
into range -1 to 1 with the following equation:

f ′ = 2× logM (f + 1)− 1 (6)

where M is an upper bound of f , f is the origin feature values
and f ′ is scaled feature values to train the GANs model.

Net Structure: Both the generator and the discriminator
in the GANs model are three dense layered neural networks
(exclude the input layer) implemented with Tensorflow library.
we use leaky-relu as activation function for both generator and
discriminator to speed up training and increase performance.
The detailed network structure is shown in Table II.

Training: In the experiment, we select 20% data (2,000
flows) as the testing set, and the remaining data as training and
validation sets. The parameters in the training are decided by

TABLE III
IND-CA UNDER DIFFERENT ATTACKS

Attack Method Total
samples

Correct
samples IND-CA IND-CA w/o

defense
Panchenko’s [36] 2000 1216 0.216 0.986
Herrmann’s[37] 2000 1118 0.118 0.935

VNG++ [3] 2000 1113 0.113 0.813
Bandwidth [3] 2000 1041 0.041 0.782

Time [3] 2000 1000 0.000 0.344
Liberatore’s[38] 2000 1085 0.085 0.974

Jaccard’s[39] 2000 1002 0.002 0.622
Wright’s[9] 2000 1097 0.097 0.974

TABLE IV
AUC AT DIFFERENT EPOCHS

Attack Method 1k epochs 50k epochs 100k epochs
Panchenko’s 0.99 0.87 0.61
Herrmann’s 0.98 0.80 0.56

VNG++ 0.96 0.78 0.59

repeated experiments until the GANs can converge well. The
discriminator is trained with RMSProp Optimizer [34] with
learning rate 10−3 and the generator is trained with Adam
Optimizer [35] with learning rate 10−3 and beta1=0.5. The
discriminator’s loss function is Wasserstein distance with gra-
dient penalty [33] and generator’s loss function is Wasserstein
distance [32].

D. Evaluation

To evaluate our defense mechanism, we implement a
set of state-of-the-art traffic analysis attacks, including
Panchenko’s SVM Classifier [36], Herrmann’s Bayes Classi-
fier [37], VNG++ Classifier[3], Bandwidth Classifier[3], Time
Classifier[3], Liberatore’s Bayes Classifier [38], Jaccard’s
Classifier [39], and Wright’s Bayes Classifier[9]. We simulate
our proposed defense mechanism against these attacks and
evaluate the performance.

1) Performance Metrics: The performance of the Flow-
GAN is evaluated by both the indistinguishability metric (i.e.,
IND-CA) defined in Section IV-B and classification metrics
in machine learning. Since the attacks are essentially the
classification between different traffic, we consider AUC,
which measures the entire two-dimensional area underneath
a ROC curve. The ROC curve is plotted by True Positive Rate
(TPR) and False Positive Rate (FPR), where TPR means rate
of a flow is real “normal” flow and the classifier determine the
flow is safe, and FPR means rate of a flow is generated flow
and the classifier determine the flow is safe in our problem.
According to the definition, it can be easily known that AUC
ranges from 0 to 1. For a random-guess classifier, the AUC
should be 0.5. When TPR is lower and FPR is higher, the AUC
is lower, and it indicates the performance of the classification
is worse and our countermeasure’s defending effect is better.

2) Defense Performance: Table III shows the IND-CA
values of the attacks on traffic flows in the testing set with
and without our defense. Without the defense from FlowGAN,
the IND-CA values are quite high and four attacks achieve
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Fig. 6. ROC Curve at Different Epochs Against Attacks

IND-CA values that are higher than 0.9, which indicates
most of these attacks can classify the censored traffic and
uncensored traffic. After applying FlowGAN with 100,000
iterations training, we observe significant reductions in IND-
CA for all attacks, and the highest IND-CA one is only 0.216.
The results show that our system can produce network traffic
flows that are indistinguishable from real network flows. With
these low IND-CA values, attackers are not able to use these
traffic analysis methods to identify and block the generated
flows. This indicates our system can be used to protect network
flows from censorship.

To extensively evaluate the performance, we also evaluate
performance on the flows generated at different iterations
(1,000 epoch, 50,000 epoch, 100,000 epoch) in three experi-
ments with the best three attacks methods in Table III (VNG++
classifier, Hermann’s Classifier, and Panchenko’s Classifier).
The ROC curves are plotted in Fig. 6 and the AUC values are
calculated in Table IV.

From Fig. 6 and Table IV, we can observe obvious perfor-
mance improvements with more training iterations. When the
GAN model is only trained with 1,000 epochs, the three clas-
sifiers can still precisely identify traffic with AUC more than
0.99, because traffic profile has not been fully camouflaged.
With more iterations, the performance significantly increases
and converges near 0.6 by 100,000 epochs. We can also notice
that, in Fig. 6, if a censor needs to ensure true positive rate
(TPR) to be more than 90%, the camouflaged traffic has also
near 90% probability to pass the censor, which indicates the
practical effectiveness of FlowGAN.

3) Overhead: Since GANs features training and flow gen-
eration process can be pre-generated offline, the computational
overhead can be ignored. The overhead of our mechanism
is mainly from the traffic morphing, i.e., compared with the
latency/bandwidth of the original flows, the extra latency/band-
width of generated flows after traffic morphing. However, the
overhead is expected and desired, as the packet length and
arrival time interval are features that we considered to morph
so that the generated traffic can have similar traffic shape as the
target traffic. So it depends on how different are the original
and the target traffic flows. As a case study, we calculate the
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time latency in our experiment that morphs the traffic from
sp0.baidu.com to www.baidu.com. The overall time overhead
is evaluated by the average additional time to transfer packages
in the origin flow. The result is illustrated in Fig. 7. Most of
the latency (> 96%) are less half a second, which indicates
our solutions is promising in practical deployment.

VII. CONCLUSION

In this paper, we present a novel design, FlowGan, to
dynamically camouflage a “source” flow to any “target” flow
by leveraging generative adversarial networks. FlowGan can
be used to thwart the traffic analysis attacks launched by
the Internet censorship. Compared with the previous traffic
morphing technique which can only morph a source flow to a
specific target, FlowGan can dynamically camouflage the flows
to any popular application flow. This is expected to prevent the
censorship from recognizing and blocking any specific type of
traffic. To measure the effectiveness of FlowGan, we introduce
a novel anonymity definition, ε-indistinguishability, to model
the indistinguishability of the target traffic and the morphed
traffic. We perform the extensive experimental evaluations
based on a real-world dataset collected to baidu.com. The
evaluation results including indistinguishability, latency, ROC



have well demonstrated its superiority under the state-of-the-
art traffic analysis attacks. Our future work includes how to im-
plement the FlowGan and apply it on a large scale anonymous
communication system and improve the performance under the
real-world network constraints.
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